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Abstract. We present a semi-classical theory of the light pressure force for atoms interacting with a two-
dimensional laser field. Unlike previous 2D theory, ours is valid for general atomic level and laser field
configurations. We show that striking new features appear in the velocity-dependent force arising from the
multi-dimensionality. Finally, we describe in detail the novel numerical technique used in the calculation.

PACS. 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

The possibility of cooling atoms with laser light was
first proposed by Hänsch and Schawlow [1], and also by
Wineland and Dehmelt [2], in 1975: due to the Doppler
effect, a two-level atom moving in a region of counter-
propagating laser beams will scatter more photons from
the beam opposing the motion if the laser is tuned to
the low frequency side of the atomic resonance. A more
rigorous theory of this Doppler cooling was later devel-
oped by Minogin and Letokhov, by Kazantsev and by
Stenholm [3]. In the early 80’s, Gordon and Ashkin [4]
calculated the force exerted on a two-level atom by laser
light and discussed in detail the idea of momentum dif-
fusion, showing how the cooling from the light pressure
force and the heating from diffusion balance each other
and drive the system to an equilibrium.

Laser cooling in three dimension was first demon-
strated in the AT&T Bell Laboratories in 1985 [5], and
the temperature measured agreed well with the prediction
of the simple 1D Doppler theory. But three years later, a
group at NIST [6] measured sample temperatures an or-
der of magnitude below the limit of the Doppler theory.
This discovery prompted a reexamination of laser cooling
theory, focusing on the multilevel nature of the real atoms
used in the experiment. Before long, polarization gradient
cooling was proposed by Dalibard and Cohen-Tannoudji
at École Normale Superieure [7], and Chu et al. at Stan-
ford [8]. This cooling mechanism depends on the interplay
of effects such as optical pumping, light shifts and the mo-
tion of atoms in light fields with polarization gradients.

All the above mentioned theories treat an atom inter-
acting with a one-dimensional light field. For more than
one spatial dimension, however, the picture still remains
incomplete. This limitation is particularly significant given
that most existing experiments deal with inherently multi-
dimensional systems. Indeed, many intriguing phenomena
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have been observed which cannot be well explained by the
one-dimensional theories.

Several efforts have been made to analyze the light
pressure force and atomic momentum distribution in more
than one dimension. Particular attention has been paid
to the case of a two-level atom interacting with a two-
dimensional light field. In 1989, Kazantsev and Krasnov
pointed out that such an atom can experience a spon-
taneous force with vortex structure [9]. Hemmerich and
Hänsch reported some experimental observations of ru-
bidium atoms interacting with a two-dimensional laser
field [10]. Their experiments confirmed the prediction of
the theoretical model that the atomic motion depends
strongly on the time-phase delay ϕ between the two
orthogonal standing waves. Mølmer et al. have studied
both two-level and multi-level atoms interacting with two-
dimensional light fields [11]. They also predicted that
the force is ϕ-dependent, an effect confirmed by the
Monte-Carlo simulations. Finkelstein et al. [12] and Castin
et al. [13] have investigated the interaction of a Jg = 1/2
atom (Jg being the ground state angular momentum quan-
tum number) with a particular 2D laser configuration (two
orthogonal standing waves propagating at x, y axes and
polarized at y and x directions, respectively). They found
that the light pressure force is not isotropic for certain val-
ues of ϕ and that this may result in velocity space chan-
neling along certain directions. Similar behavior was also
found by Cai and Bigelow who calculated the 2D velocity-
dependent force on both two and three-level atoms [14].

All these results tell us that there are qualitatively dif-
ferent features for an atom interacting with a 2D light
fields as compared to its interaction with a comparable
1D field. However, there remain significant limitations
to the results obtained: some treat the atom as a two-
level system, which may often be an oversimplified ap-
proximation of reality; some carry out numerical simula-
tions based on Monte-Carlo methods which provide some
insights but may obscure the essence of the atom-field
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interactions; some calculations neglect the excited state
populations and ground-excited coherence, an approxima-
tion only valid for weak field strength or large detunings,
and low atomic velocities. To overcome some of these lim-
itations, we present here a semi-classical theory of the me-
chanical effects of a 2D laser field on an atom. Our tech-
nique is based on a Floquet approach in which we use a
matrix generalization [15] of the continued fraction proce-
dure to solve the optical Bloch equations. Using this the-
ory, we are able to calculate the velocity-dependent light
pressure forces (i) for an arbitrary Jg ↔ Je electric dipole
transition (|Je − Jg| = 0,±1); (ii) for an arbitrary 2D
laser field configuration; (iii) with or without the presence
of magnetic fields; (iv) including all the internal atomic
states and the coherences between them, which makes our
calculations applicable to both weak and strongly saturat-
ing laser field strengths with arbitrary detunings. Using
the same technique, we can also calculate the momentum
diffusion tensor. Together with the light pressure force,
we are therefore able to study the atomic distribution in
momentum space by solving the Fokker-Planck equation.

In Section 2, we describe the procedures to calculate
the 2D light pressure force and to solve the Fokker-Planck
equation. The detailed technique of 2D continued frac-
tion method is presented in the Appendix. In Section 3,
we apply our theory to study a multi-level atom with
Jg = 1 ↔ Je = 1 dipole transition interacting with a
2D laser field with σ+ − σ− configuration, which corre-
sponds to the experimental situation of the 2D VSCPT
configuration investigated by Lawall et al. [16].

2 Basic formalism

The theory presented here is a semi-classical one. It is valid
under the assumptions that: (1) the natural linewidth
of the atomic excited state is much larger than the re-
coil energy, i.e., ~Γ � ~2k2/2m, where Γ , k and m are
the excited state spontaneous emission rate, wave number
of the light field and atomic mass, respectively; and (2)
the atomic momentum distribution width is much greater
than the single photon recoil momentum, i.e., ∆p� ~k.

The system under consideration is a multi-level atom
with Jg ↔ Je dipole transition interacting with a
monochromatic 2D light wave with frequency ωL. The
electric field can be described using the following general
expression:

E(r) =
∑

q=0,±1

Eq(r)êzqe
−iωLt + cc (1)

where êz0 = êz, êz±1 = ∓(êx ± iêy)/
√

2. The ground and
excited state sublevels form two Zeeman multiplets:

Ĵz|gmg〉 = mg~|gmg〉,
mg = −Jg,−Jg + 1, · · · , Jg − 1, Jg,

Ĵz |eme〉 = me~|eme〉,
me = −Je,−Je + 1, · · · , Je − 1, Jg. (2)

Assuming that a static magnetic field Bêz is present, the
direction of which, without loss of generality, has been
chosen to be in the z-direction, the atomic Hamiltonian
ĤA then reads:

ĤA =
P̂ 2

2m
− ~

Je∑
me=−Je

(
∆

2
+ ωBmege

)
|eme〉〈eme |

−~
Jg∑

mg=−Jg

(
−∆

2
+ ωBmggg

)
|gmg〉〈gmg | (3)

where ∆ ≡ ωL − ωA is the laser detuning with respect
to the atomic transition in free space, ωB ≡ µB/~ is
the Larmor frequency, with µ being the atomic magnetic
dipole moment and gg, ge are Landé g-factors for the
ground and excited state, respectively. Under the rotation
wave approximation, the atom-laser interaction Hamilto-
nian ĤA−L = −D̂·E reads:

ĤA−L = −~
2

Jg∑
mg=−Jg

∑
q=0,±1

〈Jg,mg, 1, q|Je,mg + q〉

×gq(r)|emg+q〉〈gmg |+ h.c. (4)

where 〈j1,m1, j2,m2|j,m〉 are Clebsch-Gordan coefficients
for dipole transitions and we have defined the complex
Rabi frequencies gq(r):

gq(r) =
2〈e‖d‖g〉Eq(r)

~
, q = 0,±1 (5)

with 〈e‖d‖g〉 being the electric dipole moment between
the ground and excited state.

The evolution of the atomic density operator is gov-
erned by the optical Bloch equation:

dρ̂
dt

=
1
i~

[ĤA + ĤA−L, ρ̂] + S(ρ̂) (6)

where S(ρ̂) represents terms accounting for spontaneous
emission arising from the atom-vacuum coupling [17]:

S(ρ̂) = −Γ
2

[(Ŝ+· Ŝ−)ρ̂+ ρ̂(Ŝ+· Ŝ−)]

+Γ
∫

d2κ

8π/3

∑
ε⊥κ

(Ŝ−· ε∗)[e−iκ·rρ̂eiκ·r](Ŝ+· ε)(7)

where Ŝ+, Ŝ− are the atomic raising and lowering opera-
tors, respectively:

Ŝ+ =
Jg∑

mg=−Jg

∑
q=0,±1

〈Jg,mg, 1, q|Je,mg + q〉(êzq)∗|emg+q〉〈gmg |

and Ŝ− = (Ŝ+)†.
In our work, we use the Wigner representation of the

atomic density matrix which is most suited for the study
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of the atomic motion in the semi-classical limit. In this
representation, the density operator ρ̂ is represented by
the Wigner matrix W (r,p, t):

W (r,p, t) =
1
h3

∫
d3u〈r +

1
2
u|ρ̂(t)|r− 1

2
u〉e−ip·u/~. (8)

And we also define the Wigner function R(r,p, t) being
the trace of W :

R(r,p, t) = Tr (W (r,p, t)) . (9)

From equations (6, 8), we obtain the equation of motion
for W (r,p, t):

∂

∂t
W (r,p, t) = −v·∇W (r,p, t)

+
1
i~

[ĤAi,W (r,p, t)] + S(W (r,p, t))

−
∫

d3κ
eiκ·r

i~

[
W (r,p +

1
2
~κ, t)ĤA−L(κ)

−ĤA−L(κ)W (r,p− 1
2
~κ, t)

]
(10)

where v = p/m is the atomic velocity, ĤAi = ĤA −
P̂ 2/2m and ĤA−L(κ) is the Fourier transform of ĤA−L(r):
ĤA−L(κ) =

∫
d3r e−iκ·rĤA−L(r).

In the semi-classical limit stated in the beginning
of this section, we can apply Bogolyubov’s procedure
to reduce equation (10) into a kinetic equation for the
Wigner function R(r,p, t) [18,19]. First, let us expand
W (r,p + 1

2~κ, t) as:

W (r,p± 1
2
~κ, t) = W (r,p, t)± 1

2
~κ· ∂

∂p
W (r,p, t)

+
~2

2

∑
i,j

1
2
κi

1
2
κj

∂2

∂pi∂pj
W (r,p, t) + · · ·

Putting the above equation into (10), we get:(
∂

∂t
+ v·∇

)
W (r,p, t) = ( LBloch +  L1 +  L2)W (r,p, t).

(11)

The explicit expressions for operators  LBloch,  L1 and  L2

are given in the Appendix. Next, we expand W (r,p, t) up
to the first order in ~k:

W = W sR+ ~k
∑

i=x,y,z

W 1
i

∂R

∂pi
· (12)

Substituting (12) into (11), and taking the trace, we ob-
tain the Fokker-Planck equation for the Wigner function
R(r,p, t):(

∂

∂t
+ v·∇

)
R = − ∂

∂p
(FR) +

∑
i,j

∂

∂pi

(
Dst
ij

∂R

∂pj

)

+
∑
i,j

∂2

∂pi∂pj
(Dsp

ijR) (13)

and the equation for the zeroth- and first-order Wigner
density matrix W s and W 1

i :

v·∇W s =  LBloch·W s (14)

v·∇W 1
i =  LBloch·W 1

i +
1

2~k
[W s ∂ĤA−L

∂ri
+
∂ĤA−L

∂ri
W s]

+
Fi
~k
W s (15)

where

F(r,v) = Tr
(
∇ĤA−L(r)W s

)
(16)

is the light pressure force exerted on the atom and the co-
efficients Dst

ij and Dsp
ij correspond to two parts of the mo-

mentum diffusion tensor. They determine the momentum
distribution broadening due to fluctuations in the number
of scattered photons under stimulated and spontaneous
emission, respectively:

Dst
ij = ~kTr

(
∂ĤA−L

∂ri
W 1

j

)
(17)

Dsp
ij =

1
2
~2k2Γ

× Tr

(∫
d2κ

8π/3
κiκj

∑
ε⊥κ

(Ŝ−· ε∗)W s(Ŝ+· ε)
)
. (18)

By solving equations (14, 15), we obtain W s and W 1
i .

And hence we can calculate the light pressure force and
the momentum diffusion tensors, from which the atomic
Wigner function can be calculated by integrating the
Fokker-Planck equation (13). Next, as an example, we will
apply the theory outlined above to study an atom with
Jg = 1 ↔ Je = 1 transition interacting with a 2D light
field with σ+ − σ− configuration.

3 Typical results: A study of a 1↔ 1
transition

The atomic energy levels and the laser fields under con-
sideration are schematically shown in Figure 1. In the ab-
sence of the magnetic field, this system has been shown
to reach temperatures below the single-photon recoil
limit via velocity selective coherent population trapping
(VSCPT) [16].

The electric field shown in Figure 1b can be written as:

E(r) = [E1(eikxê+
x + e−ikxê−x )e−iωLt + cc]

+[E2eiϕ(eikyê+
y + e−iky ê−y )e−iωLt + cc] (19)

where êx± = ∓(êy ± iêz)/
√

2, and êy± = ∓(êz ± iêx)/
√

2.
This can be rewritten in the general form of equa-
tion (1) as:

E(r) =
∑
q=0,±

Eq(r)êzqe
−iωLt + cc,

E±(r) = i(E1 sin kx∓E2eiϕ cos ky),

E0(r) =
√

2(E1 cos kx+E2eiϕ sinky). (20)
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Fig. 1. (a) Atomic energy levels for a Jg = 1 ↔ Je = 1
transition. The Clebsch-Gordan coefficients are also show in
the figure. (b) 2D σ+ − σ− laser configuration.

3.1 Velocity-dependent light pressure force

Figure 2 illustrates the typical character of the light pres-
sure force as a function of velocity. Since we are most
interested in the atomic momentum distribution, we have
spatially averaged the force over the periodicity of the
light field. Furthermore, we can decompose the force into
a spontaneous part, Fsp, and a stimulated part, Fst.
The spontaneous force can be understood as a conse-
quence of the momentum transferred to the atom from the
absorption-spontaneous emission cycles, while the stim-
ulated force arises from the interaction between the in-
phase component of the atomic dipole moment induced
by the light field and the gradient of the field itself.

As shown in Figure 2, the spontaneous force itself has
two components: a spontaneous anisotropic force, Fsp ani,
and a velocity space vortical force, Fsp vort. Fsp ani is
similar to the anisotropic force in the case of two-level
atoms [14]. It heats the atom along one axis while cools it
along the orthogonal axis. Fsp vort arises from the presence

of the magnetic field and changes sign once the direction
of the magnetic field is reversed.

The property of the spontaneous vortical force,
Fsp vort, is reminiscent of a charged particle moving in
a magnetic field. In fact, in the low velocity region, this
force can be fit to a “Lorentz” force:

Fsp vort = Qeffv×B (21)

where Qeff can be regarded as an effective charge in-
duced by the laser-atom interaction. For the case show in
Figure 2, we estimate that Qeff ≈ −5.4×10−19 coulomb or
3.4 electrons for the 23S1 ↔ 23P1 transition of metastable
4He*. Qeff changes sign as ∆ changes sign, and vanishes
at ∆ = 0.

The stimulated force also contains two parts: an
isotropic part, Fst iso, and an anisotropic part, Fst ani.
Like Fsp vort, Fst ani also vanishes in the absence of the
magnetic field. For the case shown in Figure 2, Fst ani is
a heating force along (êx − êy) and a cooling force along
the perpendicular direction (êx + êy). Fst iso vanishes at
∆ = 0, while Fst ani doesn’t.

Analytical expressions for the forces can be obtained
under the appropriate limits of low field intensity, low
atomic velocity and large magnetic field. Under these lim-
its, we can neglect the excited states population and coher-
ences ρee(me,m

′
e), and the Zeeman coherence between dif-

ferent magnetic sublevels of the ground state ρgg(mg,m
′
g).

And the ground-excited coherences, ρge(mg,me) and
ρeg(me,mg), follow adiabatically the ground state pop-
ulation. The results can be summarized in the following:

Fsp ani ∝ sin(2ϕ)(vxêx − vyêy),
Fsp vort ∝ −∆ωB(vy êx − vxêy),
Fst iso ∝ −∆(vxêx + vyêy),
Fst ani ∝ ωB sin(2ϕ)(vy êx + vxêy).

3.2 Momentum space distribution

As mentioned earlier, we can apply the same continued
fraction method to calculate the momentum diffusion ten-
sor. The force and diffusion coefficients can therefore be
used to solve the Fokker-Planck equation (13), and the
atomic distribution in momentum space can hence be ob-
tained. Figure 3 illustrates the steady state momentum
distribution for a red-detuned laser field without the pres-
ence of magnetic field. The distribution clearly shows its
dependence on the time-phase delay ϕ. For red-detuning,
the light pressure force is a cooling force for large ve-
locity and a heating force for small velocity. This fea-
ture arises from the interplay between the Doppler cooling
force and a “Sisyphus” heating force [20]. As a result, the
force becomes zero at certain non-zero critical velocities,
around which the atoms will be localized in momentum
space. A plot of this critical velocity as a function of Rabi
frequency is shown in Figure 4. For blue-detuned laser
light, the force changes sign: it becomes a heating force
for large velocity and a cooling force for small velocity.
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Fig. 2. Vector plots of the light pres-
sure force. Here g1 = g2 = 0.25Γ (gi =
2〈e||d||g〉Ei/~ is the Rabi frequency),
∆ = 0.5Γ , ωB = 1.5Γ and ϕ = 0.25π.
The velocity range shown in the figure
is vx,y ∈ [−0.5, 0.5]Γ/k. The longest ar-
row in the plot of total force, F, cor-
responds to a force with magnitude of
0.018~kΓ .

Fig. 3. Steady state momentum space dis-
tribution. Here g1 = g2 = 1.8Γ , ∆ = −Γ ,
ωB = 0. The velocity range shown in the fig-
ure is vx,y ∈ [−1.5, 1.5] Γ/k.
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Fig. 4. Critical velocity at the axis vy = 0 as a function of
Rabi frequency. Here ∆ = −Γ . For a given Rabi frequency,
the critical velocity falls in the shaded area depending on the
time-phase delay ϕ.

In the 2D VSCPT experiment, it has been speculated that
the blue-detuned laser light may cause a friction force at
low atomic velocity, which significantly enhances the rate
of population to the dark state around zero-momentum
and hence the efficiency of the VSCPT process [16]. Our
calculations here confirms this expectation in detail.

Our method can readily be applied to other level con-
figurations. If we consider a 1 ↔ 2 transition using the
same field configuration, we find many features in common
with the 1 ↔ 1 transition such as the anisotropic spon-
taneous force, a phase dependent force and the magnetic
field induced vortical force. Like the 1↔ 1 transition, the
1↔ 2 transition is of particular interest: the 1D case of a
1 ↔ 2 transition in σ+ − σ− laser field has been studied
in detail in the context of sub-Doppler cooling and the
idea of polarization gradient cooling process [7]. Figure 5
illustrates the 2D velocity-dependent force under similar
conditions used to study sub-Doppler cooling. For red de-
tuning, we see a cooling over the entire velocity range. Of
key importance, however, is that in 2D we also we observe
an enhancement in the friction coefficient at low velocity
(see Fig. 5b). This feature is a clear signature of polariza-
tion gradient cooling, analogous to the 1D case [7]. As an
illustration of the effect of multi-dimensionality, we show
in the inset of Figure 5b the friction coefficient along x axis
at low velocity as a function of time-phase delay ϕ. Re-
markably, we do not find field parameters which give rise
to the turn over in the velocity dependent force described
in detail above.

4 Conclusion

In this paper, we described a general semi-classical laser
cooling theory for an atom interacting with a two-
dimensional laser field. We calculate the light pressure
force and momentum diffusion coefficients from the optical
Bloch equations and study the momentum space distribu-
tion of the atom by solving the Fokker-Planck equation.
This theory applies to an arbitrary Jg ↔ Je electric dipole
transition, arbitrary 2D laser field configurations, as well
as arbitrary atomic velocities (within the limit of semi-

Fig. 5. (a) Vector plot of the light pressure force for a 1↔ 2
transition. Here g1 = g2 = 0.25Γ , ∆ = −0.5Γ and ϕ = π/4.
The velocity range shown in the figure is vx,y ∈ [−0.5, 0.5]Γ/k.
(b) Light pressure force along axis vy = 0. The units for force
and velocity are ~kΓ and Γ/k, respectively. Inset in (b) shows
the friction coefficient (in units of ~k2) at low velocity as a
function of ϕ. Dashed line represents its value in 1D, obtained
by taking g2 = 0.

classical theory, i.e., the velocity of atom� single photon
recoil velocity).

We applied this theory to study an atom with
Jg = 1 ↔ Je = 1 transition in a 2D σ+ − σ− laser field.
We showed that the light pressure force possesses strik-
ing new features which are unique to multi-dimensional
systems. For example, in the presence of a magnetic field,
there exists a vortical force as if the neutral atom were a
charged particle experiencing the Lorentz force. The effec-
tive charge can be as large as several electrons. Our cal-
culation confirms that there does exist a friction Sisyphus
force in the 2D VSCPT configuration with blue-detuned
laser light (as has been suggested by the experimental ob-
servations), which may significantly enhance the efficiency
of the VSCPT. The results of a 1↔ 2 transition was also
briefly mentioned, and we did not find in this case the
critical velocity at which the force changes from cooling
to heating, or vice versa.

To solve the 2D Bloch equations, we developed a gen-
eralized matrix continued fraction method. The idea is
to expand the density matrix elements into Fourier series
and obtain a double-index recurrence equation. By group-
ing the Fourier coefficients into N -photon groups (see
Appendix B), we can reduce the double-index equation
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v·rW s
ee(me,m

′
e) = [−Γ + i(me −m′e)geωB]W s

ee(me,m
′
e)

+
i

2

X

q=0,±1

〈Jg,me − q, 1, q|Je,me〉gq(r)W s
ge(me − q,m′e)−

i

2

X

q=0,±1

〈Jg,m
′
e − q, 1, q|Je,m

′
e〉g∗q (r)W s

eg(me,m
′
e − q) (A.4a)

v·rW s
eg(me,mg) = [−1

2
Γ + i(∆+ (geme − ggmg)ωB)]W s

eg(me,mg)

+
i

2

X

q=0,±1

〈Jg,me − q, 1, q|Je,me〉gq(r)W s
gg(me − q,mg)− i

2

X

q=0,±1

〈Jg,mg, 1, q|Je,mg + q〉gq(r)W s
ee(me,mg + q) (A.4b)

v·rW s
gg(mg,m

′
g) = i(mg −m′g)ggωBW

s
gg(mg,m

′
g)+Γ

X

q=0,±1

〈Jg,mg, 1, q|Je,mg + q〉〈Jg,m
′
g, 1, q|Je,m

′
g + q〉W s

ee(mg + q,m′g + q)

+
i

2

X

q=0,±1

〈Jg,mg, 1, q|Je,mg + q〉g∗q (r)W s
eg(mg + q,m′g)− i

2

X

q=0,±1

〈Jg,m
′
g, 1, q|Je, m

′
g + q〉gq(r)W s

ge(mg,m
′
g + q) (A.4c)

into a single-index equation which has been studied be-
fore using a continued fraction method. This technique
is very efficient and reduces computing time enormously
compared with the usual integration method [11]. It pro-
vides us with a powerful tool to investigate complex de-
pendences of the light pressure force, momentum diffusion
coefficients and atomic motion on laser/atom parameters.

1D laser cooling theory has given us many insights on
laser-atom interaction. However, the success of 1D the-
ory in describing many experimental results should not
obscure the fact that it does not represent the real 3D
world, and therefore, that it cannot give a full description
of all experimental findings. Indeed, as we have shown in
this paper, there are unique features that arise from the
multi-dimensionality. To develop a 3D theory is perhaps
one of the most important goals in laser cooling and trap-
ping. Our 2D theory presented here should be an impor-
tant step towards this goal.

This work was supported by the National Science Foundation
and by the David and Lucile Packard Foundation.

Appendix A: The optical Bloch equations
for the Wigner density matrix

The explicit expressions for the operators in equation (11)
are:

 LBloch(r)·W (r,p, t) =
1
i~

[ĤAi + ĤA−L(r),W (r,p, t)]

−1
2
Γ [(Ŝ+· Ŝ−)W (r,p, t) +W (r,p, t)(Ŝ+· Ŝ−)]

+Γ
∫

d2κ

8π/3

∑
ε⊥κ

(Ŝ−· ε∗)W (r,p, t)(Ŝ+· ε), (A.1)

 L1(r,p, t)·W (r,p, t) =

1
2

[
∂W

∂p
· ∂ĤA−L

∂r
+
∂ĤA−L

∂r
· ∂W
∂p

]
, (A.2)

 L2(r,p, t)·W (r,p, t) = − i~
8

∑
i,j

[
∂2W

∂pi∂pj
,

∂2

∂ri∂rj
ĤA−L

]

+
~2k2Γ

2

∑
i,j

∫
d2κ

8π/3
κiκj

∑
ε⊥κ

(Ŝ−· ε∗)
∂2W

∂pi∂pj
(S+· ε).

(A.3)

From equation (14), we obtain the optical Bloch equations
for the zeroth order Wigner density matrix:

see equations (A.4a, A.4b, A.4c) above

where

W s
ee(me,m

′
e) ≡ 〈eme |W s(r,p, t)|em′e〉,

W s
eg(me,mg) = [W s

ge(mg,me)]∗ ≡ 〈eme |Ws(r,p, t)|gmg〉,

W s
gg(mg,m

′
g) ≡ 〈gmg |Ws(r,p, t)|gm′g 〉.

Similar equations for the first order Wigner density matrix
elements W 1 can be obtained from (15).

The conservation of total population requires:

Je∑
me=−Je

W s
ee(me,me) +

Jg∑
mg=−Jg

W s
gg(mg,mg) = 1. (A.5)
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Appendix B: Two-dimensional continued
fraction method

Here we describe in detail the 2D continued fraction
method. First, let us expand the density matrix elements
into Fourier series:

W s
ee(me,m

′
e) =

∑
n,m

W (n,m)
ee (me,m

′
e)e

inkx+imky , (B.1a)

W s
eg(me,mg) =

∑
n,m

W (n,m)
eg (me,mg)einkx+imky, (B.1b)

W s
ge(mg,me) =

∑
n,m

W (n,m)
ge (mg,me)einkx+imky, (B.1c)

W s
gg(mg,m

′
g) =

∑
n,m

W (n,m)
gg (mg,m

′
g)einkx+imky . (B.1d)

Similarly, expand the Rabi frequencies gq(r) as:

gq(r) = g+
q xeikx + g−q xe−ikx + g+

q yeiky + g−q ye−iky (B.2)

By substituting equations (B.1, B.2) into (A.4, A.5),
equating the left sides of the equations to the right sides
with the same expansion order (einkx+imky), we obtain a
double-index recurrence equations for the Fourier coeffi-
cients:

M(n,m)W(n,m) +M+0W(n+ 1,m)

+M−0W(n− 1,m) +M0+W(n,m+ 1)

+M0−W(n,m− 1) = C(n,m) (B.3)

where W(n,m) is a supervector which is composed of the
Fourier coefficients of the density matrix elements,

W(n,m) =



W
(n,m)
ee (me,m

′
e)

W
(n,m)
eg (me,mg)

W
(n,m)
ge (mg,me)

W
(n,m)
gg (mg,m

′
g)


(B.4)

where me,m
′
e = −Je,−Je+1, · · · , Je−1, Je and mg,m

′
g =

−Jg,−Jg+1, · · · , Jg−1, Jg. The vector W(n,m) hasNd =
(2Je + 1 + 2Jg + 1)2 − 1 elements (the −1 results from

the constraint of the total population as in Eq. (A.5)),
and matrices M±0, M0± and M(n,m) are of dimensions
Nd ×Nd.

Let us group those vectors W(n,m) with the same
value of N = |n|+ |m| together, and call it the N -photon
group. We immediately notice from equation (B.3) that
the N -photon group is only coupled with the (N ± 1)-
photon group. Now, let us construct two sets of supervec-
tors SN and UN in the following:

S0 = W(0, 0), U0 = C(0, 0) (B.5)

SN =



W(−N + 1, 1)
W(−N + 2, 2)

...
W(0, N)

W(1, N − 1)
...

W(N, 0)
W(N − 1,−1)

...
W(0,−N)

W(−1,−N + 1)
...

W(−N, 0)



,

UN =



C(−N + 1, 1)
C(−N + 2, 2)

...
C(0, N)

C(1, N − 1)
...

C(N, 0)
C(N − 1,−1)

...
C(0,−N)

C(−1,−N + 1)
...

C(−N, 0)



,

for N > 0. (B.6)

The vectors SN are constructed in such a way that it
contains all the elements in an N -photon group.



H. Pu et al.: Semi-classical theory of laser cooling in two dimensions 277

Next, we define matrices MN,N ,M
+
N,N+1,M

−
N,N−1:

for N > 0,

MN,N =



M(−N + 1, 1)

. . .

M(0, N)
M(1, N − 1)

. . .

M(N, 0)
M(N − 1,−1)

. . .

M(0,−N)
M(−1,−N + 1)

. . .

M(−N, 0)



1

.

.

.
N

N + 1

.

.

.
2N
2N + 1

.

.

.
3N
3N + 1

.

.

.
4N

M+
N,N+1 =



M−0 M0+ 0
0 M−0 M−0 0

. . .
. . .

. . .
. . .

0 M−0 M0+ M+0 0

0 0 M0+ M+0 0

. .
.

. .
.

. .
.

. .
.

0 M0+ M+0 M0− 0
0 0 M+0 M0− 0

. . .
. . .

. . .
. . .

0 M+0 M0− M−0 0
0 0 M0− M−0 0

. . .
. . .

. . .
. . . 0

M0+ 0 0 M0− M−0



1
2

.

.

.
N

N + 1

.

.

.
2N
2N + 1

.

.

.
3N
3N + 1

.

.

.
4N

for N > 1,

M−
N,N−1 =



M+0 0 M0−

M0− M+0 0
0 M0− M+0 0

. . .
. . .

. . .
. . .

0 M0− M+0 0
0 M0− 0 0
0 M−0 M0− 0

. . .
. . .

. . .
. . .

0 M−0 M0− 0
0 M−0 0 0
0 M0+ M−0 0

. . .
. . .

. . .
. . .

0 M0+ M−0 0

0 M0+ 0 0
0 M+0 M0+ 0

. .
.

. .
.

. .
. 0

0 M+0 M0+

0 M+0



1
2
3

.

.

.
N − 1
N

N + 1

.

.

.
2N − 1

2N
2N + 1

.

.

.
3N − 1

3N
3N + 1

.

.

.
4N − 1

4N

and

M0,0 = M(0, 0),

M+
0,1 =

[
M0+ M+0 M0− M−0

]
,

M−
1,0 =

[
M0− M−0 M0+ M+0

]T
.

With all the above definitions, the double-index recurrence
equation (B.3) can be rewritten as single-index recurrence

equations:

M+
0,1·S1 +M0,0·S0 = U0, (B.7a)

M+
N,N+1·SN+1 +MN,N ·SN

+M−
N,N−1·SN−1 = UN , for N ≥ 1. (B.7b)

The single-index recurrence equations can be solved us-
ing the continued fraction method as has been done
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in calculations of 1D velocity-dependent forces [15]. We
outline the solution to equations (B.7) in the following.

Let us define:

SN = −QN ·M−
N,N−1·SN−1 + S0

N , N ≥ 1. (B.8)

Substituting the above equation into equation (B.7b), we
obtain the recurrence relationships for matrices QN and
vectors S0

N ,

QN =
1

MN,N +M+
N,N+1·QN+1,N+1(−Q−N+1,N )

,

N ≥ 0; (B.9a)

S0
N = QN (UN −M+

N,N+1·S0
N+1), N ≥ 1. (B.9b)

Equations (B.9) can be rewritten in the continued fraction
form:

QN =
1

MN,N+M+
N,N+1·

1
MN+1,N+1+· · · · (−M

−
N+1,N)

S0
N = QN · (UN −M+

N,N+1·QN+1· (UN+1

−M+
N+1,N+2·QN+2· (UN+2 −M+

N+2,N+3 · · ·

And SN can be solved as:

S0 = Q0· (U0 −M+
0,1·S0

1),

S1 = −Q1·M−
1,0·S0 + S0

1,

S2 = −Q2·M−
2,1·S1 + S0

2,

...
SN = −QN ·M−

N,N−1·SN−1 + S0
N .

The 2D continued fraction method can be straightfor-
wardly generalized to 3D. In 3D, we will encounter a
triple-index recurrence equation which can also be reduced
to a single-index recurrence equation using the same tech-
nique described here. However, the matrix size become
considerably larger in 3D. An N -photon group supervec-
tor SN in 2D contains 4N×Nd elements, while it contains

(4N2−4N+6)×Nd elements in 3D. For a 1↔ 1 transition,
S5 has 700 and 3010 elements in 2D and 3D, respectively.
Hence the calculation in 3D becomes very time-consuming
and can be impractical. However, using this method, one
should be able to make a 3D calculation in the week field
limit, in which case the excited state components of the
density matrix can be neglected and hence the matrix size
can be reduced significantly.
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